Back To Product:

Beneficial effects of soluble dietary Jerusalem artichoke (Helianthus tuberosus) in the prevention of the onset of type 2 diabetes and non-alcoholic fatty liver disease in high-fructose diet-fed rats

Jerusalem artichoke (JA) has the potential to attenuate lipid disturbances and insulin resistance (IR), but the underlying mechanisms are not well understood. In the present study, we elucidated the physiological responses and mechanisms of JA intervention with a comprehensive transcriptome analysis. Wistar rats were fed a control diet, a 60 % fructose-enriched diet (FRU), or a FRU with 10 % JA (n 6–7) for 4 weeks. An oral glucose tolerance test was carried out on day 21. Liver samples were collected for biochemical and global gene expression analyses (GeneChipw Rat Genome 230 2.0 Array, Affymetrix). Fructose feeding resulted in IR and hepatic TAG accumulation; dietary JA supplementation significantly improved these changes. Transcriptomic profiling revealed that the expression of malic enzyme 1 (Me1), associated with fatty acid synthesis; decorin (Dcn), related to fibrosis; and cytochrome P450, family 1, subfamily a, polypeptide 2 (Cyp1a2) and nicotinamide phosphoribosyltransferase (Nampt), associated with inflammation, was differentially altered by the FRU, whereas dietary JA supplementation significantly improved the expression of these genes. We established for the first time the molecular mechanisms
driving the beneficial effects of JA in the prevention of type 2 diabetes and non-alcoholic fatty liver disease. We propose that 10 % JA supplementation may be beneficial for the prevention of the onset of these diseases.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.