Back To Product:

Melatonin Reduces Prostate Cancer Cell Growth Leading to Neuroendocrine Differentiationvia a Receptor and PKA Independent Mechanism

BACKGROUND. Melatonin, the main secretory product of the pineal gland, inhibits the growth of several types of cancer cells. Melatonin limits human prostate cancer cell growth by a mechanism which involves the regulation of androgen receptor function but it is not clear whether other mechanisms may also be involved.

METHODS. Time-course and dose-dependent studies were performed using androgendependent (LNCaP) and independent (PC3) prostate cancer cells. Cell number, cell viability,
and cell cycle progression were studied. Neuroendocrine differentiation of these cells was evaluated by studying morphological and biochemical markers. Finally, molecular mechanisms including the participation of melatonin membrane receptors, intracellular cAMP levels,and the PKA signal transduction pathway were also analyzed.

RESULTS. Melatonin treatment dramatically reduced the number of prostate cancer cells and stopped cell cycle progression in both LNCaP and PC3 cells. In addition, it induced cellular differentiation as indicated by obvious morphological changes and neuroendocrine biochemical parameters. The role of melatonin in cellular proliferation and differentiation of prostate cancer cells is not mediated by its membrane receptors nor related to PKA activation.

CONCLUSIONS. The treatment of prostate cancer cells with pharmacological concentrations of melatonin influences not only androgen-sensitive but also androgen-insensitive epithelial prostate cancer cells. Cell differentiation promoted by melatonin is not mediated by PKA activation although it increases, in a transitory manner, intracellular cAMP levels. Melatonin markedly influences the proliferative status of prostate cancer cells. These effects should be evaluated thoroughly since melatonin levels are diminished in aged individuals when prostate cancer typically occurs.